The head-neck relationship has long been a focus of major interest to the Alexander Technique (AT). F. M. Alexander, the originator of the AT, became so convinced of its importance that he referred to it as the “primary control” of the whole of what he termed the human “psychophysical mechanism”.

The proper functioning of the head-neck relationship remains a central concern in the present-day AT approach and is seen as playing a key role in mediating posture, balance and overall neuromuscular functioning. A significant degree of scientific support for this view can be found in the studies on the postural reflexes carried out by Magnus and Sherrington in the early decades of the 20th century. A detailed discussion of how this work and its later developments relate to the practice of the AT is available at the link below.

During the 1990s, Mikael Karlberg and his colleagues in the Departments of Neurosurgery and Oto-Rhino-Laryngology in the University Hospital in Lund, Sweden, published a series of six scientific papers dealing with various aspects of the functioning of the head-neck relationship with a particular emphasis on how it relates to the broad syndrome of “cervical vertigo”. A summary paper entitled The neck and human balance by Dr Karlberg was published by Lund University in 1996.

There is no reference to the AT in this work which probably explains why it has not had the visibility it deserves in the AT profession. The present paper provides a short summary of this work and how it relates to the AT.

Karlberg’s research

Karlberg numbers these papers I-VI in The neck and human balance and the same numbering is used here. Two of the papers (I and II) looked at linkages between neck mobility, or restraints on it, and voluntary and involuntary eye movements. Paper III looked at the effects of neck pain on postural performance and paper IV looked at the effects on postural performance when different treatments were used to deal with the neck pain. Paper V assessed the effects of physiotherapy on patients suffering from dizziness or vertigo of suspected cervical origin and Paper VI looked at the use of posturographic analysis to distinguish between cervical vertigo and other conditions presenting similar symptoms. The neck and human balance provides a synoptic view of the work described in these papers.

The following brief notes on each of the above papers are written from an AT perspective. The intention is to identify the extent to which the rigorously conducted research work of Karlberg and his colleagues supports, illuminates, or undermines, the key AT tenet of the centrality of the head-neck relationship. This paper has been seen by Dr Karlberg who has said it provides an acceptable overview of the research and that he has no objection to its publication on the internet.

1 Foley
2 Karlberg (1996)p33
This study addressed the question of whether inducing a twist in the neck has an effect on the functioning of the eyes as indicated by changes in the phenomenon known as optokinetic after-nystagmus (OKAN).

Optokinetic nystagmus (OKN) is a normal involuntary or reflex response of the eye. It was first noted by Purkinje in 1825 and has long been known as “train” nystagmus. It occurs when the eye follows an object moving relative to the head such as when looking out from a train – hence the name. It has two parts. In the first part, the eye smoothly tracks the object until it reaches the limit of its movement in its socket. The eye then makes a quick movement in the opposite direction – this rapid return of the eye towards its original position is usually referred to as a right-beating or left-beating movement depending on its direction. The first component is cortically mediated; it is similar to what are known as the smooth pursuit movements with which the eye deliberately follows a moving object. The quick return component is subcortical.

OKAN is a reflexive movement of the eye which occurs after the termination of an optokinetic stimulus. Abnormal OKAN is one of the indicators of abnormal functioning of the vestibular system. The researchers wished...

to ascertain whether asymmetric cervical proprioceptive input from sustained head rotations induces asymmetric orientational information reflected in asymmetric OKAN, analogous with findings for asymmetric vestibular input.4

In less scientific terms, the study was looking at how inducing a twist in the neck might affect the behaviour of the eyes when they were subjected to tests that involved following a moving object.

The researchers already knew that other experiments on human volunteers had shown that when the vestibular system is artificially disturbed this has effects on the behaviour of the eyes as manifested in OKAN. The trials by Karlberg and his colleagues were analogous and were designed to establish whether similar effects occurred when the normal proprioceptive input from the neck was disturbed by keeping it in a deliberately twisted state. The interest for AT practitioners is whether such deliberately induced distortions in the head-neck relationship produce scientifically measurable effects.

Sixteen healthy volunteers took part in the study, eight men and eight women. During the tests, each subject was seated in a chair. The head was surrounded by a 1.8 metre diameter drum, with 10 cm black and white vertical stripes, which could be rotated horizontally around the test subject’s head. During the tests, the drum was rotated for 60 seconds. The eye movements during the rotation period and for 60 seconds afterwards were recorded. The subjects performed mental arithmetic during the test and the 60 second period after it.

As a preliminary to the main asymmetric testing, each subject was tested with the head facing straight ahead in the neutral position. These preliminary tests were designed to show the behaviour of the eyes when the neck was in its normal state with the head looking straight ahead.

3 Karlberg and Magnusson (1996)
4 Ibid. p647
During the tests, the subjects either actively held the head at an angle to the straight-ahead or had it passively held at a 70-degree angle to the straight-ahead by means of a rigid custom-built collar and chin support of the type that rests on the shoulders. The eye-ear axis was horizontal and the subject’s position was checked before each test began.

Each subject underwent one test with the head actively held in one direction and another with the head passively rotated in the opposite direction. The test order, active and passive neck twists, left and right twists and direction of drum rotation, were randomly assigned to the test subjects.

Test results

The values found for OKAN in the tests with the head facing straight ahead were in accordance with those reported in the scientific literature for healthy subjects. In other words, the test subjects all showed normally functioning eyes.

When the head was passively held in an asymmetric position – the neck twisted and held in the collar - there was a reduction in the intensity of the OKAN beating in the direction opposite to the twist but not in the OKAN beating in the direction of the twist. When the head was actively held in an asymmetric position by the test-subjects, similar results were obtained.

Part of the background to the study was a desire to establish the validity of the clinical assumption that asymmetrical OKAN is evidence of problems in the vestibular system. The study provided evidence that this was not necessarily the case since the artificially induced twist in the neck was, in itself, sufficient to produce an asymmetrical OKAN.

In their discussion of the detailed results, the researchers note:

The reduction of OKAN beating in the direction opposite to the head rotation found in the present study is analogous to the reduction in OKAN beating towards the less active side previously found in conjunction with vestibular asymmetry. This suggests that in healthy subjects cervical proprioception affects subcortical OKN...The findings also provide further evidence of convergence of visual, vestibular and neck proprioceptive signals in healthy humans...This supports the controversial assumption that disturbances of neck proprioception may cause dizziness or even vertigo.

The researchers go on to mention experiments by other research groups in which different types of stimuli were applied to neck muscles. These experiments relied on the fact that when vibration is applied to muscles it stimulates the firing of muscle spindles thus sending signals to the central nervous system that the muscles have lengthened. Using muscle-stimulation of this type it is therefore possible to produce illusions of the head being twisted to the right or left. This work shows that

...vestibular signals and neck proprioceptive signals affect both cognitive cortical functions ('subjective straight-ahead') and subcortical functions (OKAN) in a similar way.

The Karlberg paper concludes by discussing the fact that:

Cervical proprioception also influences postural control in healthy subjects, the position of the head determining the direction of body sway
induced by galvanic stimulation of the vestibular nerves. With the head facing forward, a galvanic stimulus induces lateral body sway, but if the body is rotated to one side the stimulus induces body sway in the antero-posterior direction instead. As the vestibular stimulus is identical in the two conditions, the changed direction of sway must be due to some signalling of head position interacting with the vestibular signal. 7

The details are complex but the broad sense that postural control and at least some aspects of eye behaviour are influenced by the combined actions of the vestibular system and neck proprioception is clear. This is particularly interesting when considered in an AT perspective.

An AT perspective

AT practitioners attribute a critically important role to the head-neck relationship in normal human neuromuscular functioning. This paper by Karlberg and Magnusson provides welcome scientifically measured detail on some of the effects occurring when the normal functioning of the head-neck relationship is experimentally distorted.

The main finding is that subjects experiencing a voluntary or an induced twist of the neck, show a distortion of the OKAN similar to that when there is an asymmetry in vestibular functioning. The researchers remark that this suggests a convergence of visual, vestibular and neck proprioceptive signals in healthy humans. This would find ready support from any experienced AT teacher; everyday teaching experience demonstrates that the functioning of the overall neuromusculature tends to be affected in a variety of ways by an actively or passively induced twist of the neck.

Magnus’ work on the postural reflexes led him to the observation, well-known among AT teachers, that

\[\text{The mechanism as a whole acts in such a way that the head leads and the body follows.} \quad 8 \]

The Karlberg and Magnusson results help fill in some further neuromuscular details on what is happening when a twist is induced in the neck. The muscles throughout the whole cervical area are obviously in any such distortion but those in the sub-occipital area would seem worthy of particular attention. This group of muscles, comprising the sub-occipital and small anterior muscles, provides a series of links between the skull and the top two cervical vertebrae and is particularly rich in muscle spindles. Jull et al remark

\[\text{The density of muscle spindles is highest in the suboccipital muscles and, even more specifically, in the deeper sections of these muscles. The average number of muscle spindles found per gram of muscle is: 242 in the obliquus capitis inferior; 190 in the obliquus capitis superior; 98 in the rectus capitis posterior minor; ... For comparison, the first lumbrical in the hand has 16 and the superficial trapezius muscle has 2 muscle spindles per gram of muscle.} \quad 9 \]

The muscles in the sub-occipital area are thus up to a hundred or more times more sensitive to stretching than those in other parts of the body. Thus, though they can only play a minimum role in moving the head, they possess the necessary neurological characteristics and are positioned to act as extremely sensitive strain gauges in the task

7 Ibid. p650
8 Magnus (1926a)p536
of monitoring the muscular state of the head-neck relationship. Their major function is more likely to be proprioceptive rather than contributing to the task of moving the head and this, indeed, is suggested by Gray’s Anatomy.

Obliquus capitis superior and the two recti are probably more important as postural muscles than as prime movers, but this is difficult to confirm by direct observation.

Their main role in other words appears to be the provision of feedback on the relative positions of the head and neck to the postural control centres in the brainstem. If these muscles happen to be immobilised by, for example, a neck collar the postural control centres in the brainstem, identified by Magnus, are not receiving their normal flows of afferent information. The efferent flows which govern postural and other reflex functions, including the responses of the eyes to movements, are therefore deficient and some impact on balance and other functions is to be expected. This is discussed in more detail in Foley

Such speculations are supported by the researchers’ discussion of the results of experiments by others on the effects of galvanic stimulation of the vestibular nerves which showed that:

With the head facing forward, a galvanic stimulus induces lateral body sway, but if the head is rotated to one side the stimulus induces body sway in the antero-posterior direction instead. As the vestibular stimulus is identical in the two conditions, the changed direction of sway must be due to some signalling of head position interacting with the vestibular signal.

It needs to be borne in mind in the present context that the main concern of the AT is with the overall functioning of the neuromusculature rather than the specific body elements usually dealt with by therapeutic interventions. In addressing this, AT teachers place particular emphasis on reducing habitual interference with the working of head-neck relationship to a minimum, thus allowing the postural reflexes to function more effectively. It is thus encouraging to find that this study clearly identifies the orientation of the head relative to the neck as one of the important contributing elements to the overall functioning of the neuromuscular system in healthy humans.

Paper II – Effects of restrained cervical mobility on voluntary eye movements

This study addressed the relationship between neck-restraint and the functioning of the eyes and how this might be connected with tension headaches. In their introduction, the authors note the suggestion that differences in oculomotor functioning between normal subjects and those with tension headache are due to

...pathological cervical proprioception induced by increased tension in the neck muscles. However, as tension headache patients have significantly reduced mobility of the cervical spine as compared to healthy subjects, an alternative interpretation might be that the

10 Williams (1995) p813
11 Foley p32
12 Karlberg and Magnusson (1996)p650
restriction in neck movement per se contributes to the oculomotor impairment.13

The formal aim of the study was

...to ascertain whether restriction of cervical movements per se affects voluntary eye movements; and if so, whether there is a concomitant impairment of postural control.14

A total of 11 healthy subjects, 5 males and 6 females, took part in the study. The neck movements of each subject were restricted for 5 consecutive days and nights by means of a rigid polyethylene neck collar and alcoholic beverages were excluded for the duration of the study. The collars were only removed for 10 minutes each day to permit the subjects to take a shower.

In the tests of voluntary eye movements, the subjects were asked to move their eyes between two light-emitting diodes set 20°, 40° and 60° apart. These small quick eye movements are technically termed saccades. In what were termed the smooth pursuit movement tests the subjects were asked to follow a light moving at a constant velocity over 60° of the visual field,

In the tests of postural control, the subjects stood with arms crossed over the chest, with heels together and feet at an angle of 30°. To avoid auditory clues, they wore headphones through which music by Mozart was played. Postural control was evaluated by measuring the forces imposed by the subject’s feet while standing on a force platform.

Body-sway was induced in the subjects by attaching a device which provided a vibratory stimulus to the calf-muscles on both legs with the subjects standing on the force platform. Recordings were made with the subjects’ eyes closed. The tests were carried out on a bare force-platform and one covered with a 5 cm thick mat of foam rubber in order to reduce pressure-receptor information from the soles of the feet.

Posture was also perturbed by transmitting an on-off electric current (galvanic) stimulus to the vestibular nerves through carbon-rubber electrodes attached to the mastoid area of scalp. These tests were carried out with the subjects’ eyes closed. Both antero-posterior and side-to-side sway were computed from the variations in the pressure patterns exerted by the subjects’ feet on the force platform.

A control experiment was also done in which in which the above tests were carried out on six volunteers with and without the neck restraining collars. No differences were found and the researchers concluded that wearing the restricting collar in itself did not have any immediate effect on postural control.15

Measurements of voluntary eye-movements, both saccades and pursuit movements, were made on Day 1 and Day 5 of the study with the subjects wearing the neck collars.

Test results

The results for the eye movement tests showed that after five days of neck restriction there was little change in the speed of the 20° voluntary saccades but those of 40° and 60° were significantly slower. The only significant change in the smooth pursuit movement tests was a slight slowing at the maximum speed of movement of the light stimulus.

13 Karlberg et al (1991) p664
14 Ibid. pp664
15 Ibid. p668
The measurements of sway showed no significant effect on the subjects’ performance when subjected to the vibratory stimulus to the calf, or to the galvanic stimulus to the vestibular nerve applied in the mastoid area. The change in the forces induced when dealing with antero-posterior sway suggested that more energy was required to control the position of the body after 5 days of restricted neck movement.16

The researchers summarised their findings as follows:

\textit{...the present findings suggest that restriction of neck movements \textit{per se}, without a simultaneous tension syndrome, reduces velocity of voluntary saccades and pursuit eye movements. Although the restriction of neck movements caused an increase in variance in vibration-induced body sway indicating a somewhat increased effort to maintain posture, the effect on postural control was small and compensated for so that response to vestibular or proprioceptive disturbance remained unaffected.}17

The effects of wearing the neck collar for five days, as revealed by the study, were thus relatively minor. The mobility of the eyes was reduced to a certain extent but only for the larger saccades and faster pursuit movements. The effect on postural control was also relatively small being confined to a suggestion that there was an increase in the energy required to deal with a vibration-induced back and forth postural sway.

\textit{An AT perspective}

The pose adopted by the study subjects, standing with heels together and arms folded across the chest, tends to stabilise the neck and shoulder area. The same conditions applied in the control tests. The test set-up in other words reduces, if not eliminates, the possibly confounding influence of mobility in the head-neck relationship.

In AT terms all the tests, including the controls, were carried out on study-subjects with relatively immobile or stiff necks. It is thus not surprising that the results showed relatively little change in postural responsiveness when the collar was worn for a period of five days.

In normal behaviour, there is a tendency for some degree of head-rotation to be involved when the eyes track an object. The fixing of the head-neck relationship by means of the collar eliminated any such contribution. Given the high mobility afforded the eyes by the extra-ocular muscles it is not surprising that the effects of restricting neck movements was relatively slight. The ability to track moving objects is vital to survival and, as usual with such neuromuscular functions, there is a high degree of redundancy of the various mechanisms involved. The tests showed a slight slowing of the ocular responses over the five-week period of the tests but it would require a much longer test period to establish whether a reduction in neck mobility had any impact on long term eye performance.

In the discussion, the authors suggest that “...long-term restriction of neck movements is sufficient to reduce the ability to perform voluntary eye movements.”18 This would lend support to the view common among 19th century ophthalmic pioneers, though little mentioned now, that there is a strong association between posture and myopia. J. Soelberg Wells, for example, believed that stooping which is almost inevitably associated with some degree of constriction of neck mobility, was a direct cause of

16 Ibid. p667

17 Ibid. p669

18 Ibid. p669
myopia. He made the almost certainly counter-productive suggestion that “…we should, therefore, always direct myopes to read with the head well thrown back.” But it would be interesting to know if there is any measurable correlation between myopia and reduced proprioceptive feedback from the neck muscles.

Paper III – Reduced postural control in patients with chronic cervicobrachial pain syndrome

Cervicobrachial pain is the term used for pain in the neck which radiates into the shoulder and upper arm areas. In the introduction to this paper, the researchers note other research results which indicate that

> Patients with neck pain have a poorer ability to reassume the original position of the head after an active head movement, indicating an alteration in neck proprioception; and restrictions of cervical mobility by a cervical collar impairs both postural control and voluntary eye-movements in healthy subjects. Thus it appears that cervical input can be impaired in patients with neck pain, and may be accompanied by disturbances in postural control.

The research covered in this paper was therefore designed to establish whether cervicobrachial pain has a disturbing impact on postural performance. The formal statement of the researchers’ aim was:

> …to ascertain whether, as compared to healthy subjects, patients with chronic cervicobrachial pain syndrome have disturbed postural control, as objectively analysed by posturography using vibratory induced body sway and galvanically induced body sway.

The test subjects were selected from patients attending the Department of Neurosurgery at Lund University Hospital. The patients all had cervicobrachial pain of more than three months duration and were being evaluated for possible surgical treatment. Patients with whiplash or other traumatic injuries were excluded and all were examined by the same neurosurgeon and physiotherapist.

An initial 121 patients were considered of whom 89 were selected as having the symptoms of cervical root compression (CRC) without additional complications; these were known as the CRC group. The remaining 18 patients showed no, or only negligible, signs of CRC and were known as the non-CRC group. The degree of pain experienced was measured on a 100 mm horizontal visual analogue scale (VAS) ranging from “no pain” at one end to “extreme pain” at the other. The non-CRC group had significantly higher values for pain intensity measured on the VAS scale and significantly lower values of cervical range of motion than the CRC group. A further 20 healthy subjects were recruited from among the hospital staff as a sex and age matched control group.

The test subjects stood upright and facing ahead on a force table with knees extended, heels together but not touching, feet at an angle of 30° and arms crossed over the chest. They wore earphones that relayed Mozart and had their eyes closed or focused on a

19 Soelberg Wells (1864) p170
21 This refers to the work described in Paper II above which showed that the effects of a neck-collar on postural control were slight but greater in the case of voluntary eye-movements.
23 Ibid. p242
mark on the wall 1.5 m away. They were separately tested for vibration induced and galvanically induced body sway.

Body sway was produced either by attaching a vibration device to the calf muscles or to the paraspinal muscles above the seventh cervical vertebra using a neck-collar. Test subjects were also subjected to the on-off galvanic stimulus applied to the vestibular nerves through carbon-rubber electrodes attached to the mastoid area of the scalp.

Test results
The patients in the study performed significantly poorer than healthy subjects when their postural control functions were measured. The patients, both CRC and non-CRC, compared with the controls, showed higher sway velocities under calf and neck-muscle stimulation; they also showed greater variation in the galvanically-induced body sway tests. No significant difference between the CRC and non-CRC groups was found under the test conditions. About 50% of the patients complained of vertigo or dizziness.

The overall conclusions of the researchers was

Patients with chronic cervicobrachial pain syndrome have impaired postural control, compared to healthy subjects. The results suggest that cervical lesions such as root compression may impair postural control. Disorders of the neck should be considered when assessing patients complaining of dizziness, vertigo, and balance disturbances.24

An AT perspective
The results are fully in accordance with AT views. The existence of cervicobrachial pain is inevitably associated with reduced mobility in the head-neck area. This would be expected to bring about a reduction in postural control under the test conditions.

Additionally, AT professionals would feel that the test results are at least consistent with the view that an habitual stiff-necked posture can lead over time not just to an impairment of postural control but to other problems including a state of chronic cervicobrachial pain.

Paper IV – Effects of different treatments on postural performance in patients with cervical root compression25
This study compared the effects of randomly assigned surgery, physiotherapy and immobilization with a cervical collar on patients suffering from cervical root compression. In the words of the researchers

...we used a fairly well-defined neck disorder, that is, cervical root compression, as a “model” to investigate the possible importance of cervical sensory information in postural control. We objectively assessed postural performance with posturography before and after treatment in consecutive patients with MRI-verified cervical root compression, randomly assigned to surgery, physiotherapy, or immobilization with cervical collars.26

The test subjects were drawn from patients with more than three months of cervicobrachial pain who were being assessed for surgical treatment. Patients with whiplash or other traumatic injuries were excluded. Three patients from the initially

24 Ibid. p248
26 Ibid. p440
selected group excluded themselves because of spontaneous subjective improvement. A total of 71 patients entered the trial and were randomly assigned to the three treatment groups: 22 to the surgery group; 24 to the physiotherapy group; and 25 to the cervical collar group. Twenty healthy staff from the hospital were recruited as a sex and age matched control group.

The subjects were tested for postural performance on a force table. Postural sway was induced using vibrating devices attached to the calf and neck muscles and galvanically induced perturbation of the vestibular nerve, as described in the previously reviewed papers. The patients were tested before treatment and 14 to 18 weeks after surgery or from the date of the start of physiotherapy or wearing of a surgical collar. The control group was subjected to the same tests.

The surgical interventions used what is called the “anterior cervical decompression and fusion technique” in which a pair of cervical vertebrae, usually C5/6 or C6/7 are fused.27 A cervical collar was sometimes used post-operatively for one or two days but no physiotherapy was given before the tests of postural control.

Physiotherapy was given in the patients’ homes by local physiotherapists with documented experience in dealing with neck and shoulder pain. Each patient had 15 sessions of 30-45 minutes each. The choice of treatments was by the physiotherapists and included ergonometric instructions, heat and cold treatments, manual traction, massage, transcutaneous nerve stimulation, stretching exercises, and resting, all directed towards increasing strength and endurance and restoration of the normal range of motion and function.28 A total of 22 different physiotherapists were used as the patients came from different geographical areas. It was thus impossible to use uniform methods but this reflects the reality of physiotherapy treatment options.

The cervical collars were of the shoulder-resting type for use during daytime. A soft collar was worn at night. Patients were supplied with a different collar if they had problems with the one issued to them; this happened in two cases.

Test results

The study involved eleven different tests and three patient groups. This permits a wide range of detailed comparisons which, for the purpose of the present paper, need only be summarised briefly.

The starting point was that before treatment, the three patient groups all revealed significantly impaired postural performance compared to the control group. All three groups showed some improvements after treatment but the surgery group showed significantly greater improvements in postural control compared to the cervical collar group in all 11 tests; in comparison with the physiotherapy group, it showed significantly greater improvements in three of the 11 tests.29 The surgery group also showed a greater reduction in cervicobrachial pain than the physiotherapy and collar groups.

Comparing the postural performance of the groups with the healthy subjects in the control group the researchers found that

After surgical treatment there were no significant differences suggesting a normalization of postural control in the surgery group. After

27 Ibid. p442
28 Ibid. p444
29 Ibid. p447
treatment, both the physiology group and the cervical collar group still differed significantly in postural control from healthy subjects.30

The patients in the surgery group did not manifest any increase in cervical mobility despite the decrease in cervical pain after surgery. The researchers observed:

This is perhaps to be explained by restriction of movement due to the fusion procedure itself, though the surgical fusion of two vertebral bodies does not impair overall cervical range of motion to a measurable extent, as assessed with conventional clinical methods.31

In discussing the possible reasons for the improved postural performance after neck surgery, the researchers speculated that if

...cervical pain is reduced by surgery, then cervical muscle tension may also be reduced. This may in turn result in normalization of the proprioceptive signals from the neck muscles and a reduction of the sensory mismatch when proprioceptive signals converge with vestibular and other sensory information in the CNS. Such an interpretation is also in line with proposed explanations for the impaired oculomotor control in patients with tension headache.32

The researchers summed up their results as follows:

...postural control was improved and cervical pain reduced only in the surgically treated group. The mechanism responsible for the improvement is still obscure. The most probable explanation is that the reduction in cervical pain, by reduced pressure on neural structures or eliminated motion after surgery, induces a chain of events, resulting in reduction in muscular tension and hence a normalization of the proprioceptive input and subsequently improved postural control.33

An AT perspective

The failure of physiotherapy to produce any significant beneficial effect either in postural control or pain34 is perhaps surprising. Most experienced AT professionals, would, however, testify that this is a common occurrence. Many people, including the present author, who have been suffering from chronic cervicobrachial pain, find themselves having recourse to the AT only when physiotherapy and other treatments have failed.

On the basis of the tests, fusion of cervical vertebrae clearly provides a reliable pain-reduction option. It brings a certain diminution in the natural flexibility and functionality of the unimpaired neck but because of the high degree of redundancy in the neck mobility mechanisms the actual decline in day-to-day performance, as pointed out by the researchers, may be slight. The trade-off between any such reduction in neck performance and a cessation or major reduction in the pain is likely to be highly attractive to patients.

The after-treatment tests were carried out 14-18 weeks after the end of treatment. This is clearly long enough to deal with ephemeral effects but leaves open the possibility of

30 Ibid. p448
31 Ibid. p450
32 Ibid. p451
33 Ibid. p452
34 Ibid. p445
longer-term impacts. The control tests showed that the fusion of cervical vertebrae did not reveal any impairment of postural control when compared with the healthy subjects but, as noted earlier, the test-posture itself involves a certain amount of neck immobilisation in the control subjects.

The research reported in Papers I and II shows that altered neck proprioception as a result of immobilisation has an impact on eye performance as measured by OKAN. Paper III shows that chronic cervicobrachial pain, which also has an impact on neck mobility, affects postural control and, presumably, eye performance. It would therefore be interesting to know whether there are any long-term effects from the alterations in neck proprioception resulting from cervical fusion.

Paper V – Postural and symptomatic improvement after physiotherapy in patients with dizziness of suspected cervical origin

Vertigo and dizziness often accompany neck pain; this syndrome is commonly referred to as cervical vertigo. Because of the linkages between cervical proprioception and oculomotor and postural control, disturbed cervical proprioceptive input has been suggested as a probable cause of cervical vertigo. The aim of this study was:

To ascertain whether, as compared with healthy subjects, the selected patients have disturbed postural control as objectively measured by posturography and to investigate in a randomized, controlled setting the effects of physiotherapy on postural performance and subjective symptoms of neck pain and dizziness/vertigo.

The subjects of this study were patients with recent onset of neck pain and simultaneous complaints of dizziness or vertigo who had been referred to the hospital by local general practitioners. A total of 17 patients, 15 women and 2 men, participated in the study. All suffered from neck pain and some degree of vertigo or balance problems and most also suffered from headaches and nausea. The neck muscles of all the included patients were tender when palpated and 13 of the 17 complained of tension-type headaches.

The patients were randomly divided into two groups; the treatment group had 9 patients and the delayed treatment group had 8 patients. Both groups were subjected to posturographic testing. The treatment group started physiotherapy immediately and the delayed treatment group waited 8 weeks when they were subjected to posturographic testing again and then started physiotherapy. A sex and age matched control group was chosen from the hospital staff.

The patients were treated by two physiotherapists. The treatments were based on an analysis of different functions such as mobility, stability, muscle tension and tone, postural alignment and body awareness. The treatments included soft tissue treatment, stabilization exercises for the trunk and spine, passive and active mobilization, relaxation and home training. Treatment was given over 5-20 weeks and the number of treatments varied from 5 to 23. The treatment regimes were individualized and aimed at reducing cervical discomfort and pain so that the results do not permit a meaningful discussion of the approaches used.
Test results

In the initial stimulus-free trials of postural performance, the patients showed significantly higher body-sway velocities than the controls. Variance in the vibration-induced and galvanically induced sway was also significantly greater in the patients than in the healthy controls. In other words, the performance of the patients was significantly poorer than that of the healthy controls.

After physiotherapy, all the study subjects showed an improvement in postural performance when tested while standing on the force table without any artificial perturbation of their balance.\(^{39}\) The treatment group showed significantly lower values for subjective neck pain and dizziness intensity but not for dizziness frequency. In the delayed treatment group there were significant reductions in dizziness intensity and frequency and a reduction approaching significance in neck pain.

The researchers summarised their main findings as follows:

\[
\text{...comparison of the patients after physiotherapy to the group of healthy subjects showed the patients’ still to be poorer but not in all tests, and the difference between the groups had diminished. Thus physiotherapy improved but did not normalize the patients’ postural performance.}^{40}\]

They also recommended that the possibility of neck disorders should be considered when assessing patients complaining of dizziness, though other diagnoses are common.

An AT perspective

The conclusions of the research team would face no disagreement from AT professionals. The researchers observed:

\[
\text{The performance of patients with dizziness of suspected cervical origin was significantly poorer than that of the healthy controls in the objective tests of postural performance. This indicates that postural control is impaired in these patients and suggests that cervical disorders may affect human balance functions.}^{41}\]

This lends substantial support to the AT focus on the head-neck relationship as the key element in postural control and the wider functioning of the human neuromuscular system.

Paper VI – Role of posturographic analysis\(^{42}\)

This paper is mainly concerned with the use of posturographic analysis, using a force table and artificially induced body sway, for diagnostic purposes. The results showed that using this approach it was possible to distinguish patients suffering from cervical vertigo from healthy subjects and from those suffering from cervical neuritis. This work is of obvious relevance to clinicians dealing with such neck problems but is outside the scope and expertise of present-day AT practitioners and is therefore not considered here.

\[^{39}\text{Ibid. p}878\]
\[^{40}\text{Ibid. p}881\]
\[^{41}\text{Ibid. p}878\]
\[^{42}\text{Karlberg, Johansson, et al (1995)}\]
Conclusions

The importance of these papers for the AT is that they provide both general and, in a number of cases, detailed, supporting scientific explanations for some of its practical effects. There is, in fact, no lack of anecdotal support by well-qualified observers for the often dramatic effects of AT lessons. John Dewey, the philosopher and educationalist was a staunch supporter of the AT from his first encounter with it at the age of fifty-six to the end of his life forty years later. Nikolaas Tinbergen devoted half his Noble Prize acceptance speech to its praise.43 Raymond Dart the paleoanthropologist and George Ellett Coghill were other strong supporters.

There have also been some clinical studies in which the AT has shown significant effects. The most recent of these is a study of lower back-pain carried out by Southampton and Bristol Universities and reported in the British Medical Journal in 2008.44 This showed that a regime of AT lessons showed greater clinical improvement when compared with massage and exercise.

The drawback with such trials is that there is little physiological rationale for whatever favourable results may be found. This leaves more or less undisturbed the inevitable sceptical attribution of the results to placebo effects, under whatever guise they may appear, whether the mobilisation of the natural homeostatic repair mechanisms of the human organism, or the impossible-to-control-for effects of prayer or homeopathy.

The great value of the studies by Karlberg and his associates is that they have pried apart some of the effects of the disruption of vestibular and neck proprioceptive signals; they have also shown and discussed how chronic cervicobrachial pain can affect postural control. Such studies provide additional building blocks for the wider theoretical discussion of the role of the head-neck relationship which has been happening since the time of Magnus and Sherrington. It is therefore to be hoped that this body of work will be used as an input to future research on the head-neck relationship. From the viewpoint of AT professionals such studies can only provide a sounder foundation for their work and a greater scientific understanding of the mechanisms at work in delivering its well-attested results.

Acknowledgement

I am extremely grateful to Steven Hallmark who made me aware of Dr Karlberg’s work as well as getting me copies of the papers reviewed here. Steven also helped greatly in the writing of this review with his comments and suggestions. He runs an AT private practice as well as an Alexander teacher training school in Stockholm and can be contacted at stevenhallmark47@yahoo.com.

REFERENCES

Foley, G. (December 2009) Towards a neurophysiology of the Alexander Technique http://www.geraldfoley.co.uk/Neurophysiology.html

43 Tinbergen (1973)

44 BMJ 2008; 337: a884

